skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hirzel, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract The Mid‐Atlantic Bight (MAB) hosts a large and productive marine ecosystem supported by high phytoplankton concentrations. Enhanced surface chlorophyll concentrations at the MAB shelf‐break front have been detected in synoptic measurements, yet this feature is not present in seasonal means. To understand why, we assess the conditions associated with enhanced surface chlorophyll at the shelf break. We employ in‐situ and remote sensing data, and a 2‐dimensional model to show that Ekman restratification driven by upfront winds drives ephemerally enhanced chlorophyll concentrations at the shelf‐break front in spring. Using 8‐day composite satellite‐measured surface chlorophyll concentration data from 2003–2020, we constructed a daily running mean (DRM) climatology of the cross‐shelf chlorophyll distribution for the northern MAB region. While the frontal enhancement of chlorophyll is apparent in the DRM climatology, it is not captured in the seasonal climatology due to its short duration of less than a week. In‐situ measurements of the frontal chlorophyll enhancement reveal that chlorophyll is highest in spring when the shelf‐break front slumps offshore from its steep wintertime position causing restratification in the upper part of the water column. Several restratification mechanisms are possible, but the first day of enhanced chlorophyll at the shelf break corresponds to increasing upfront winds, suggesting that the frontal restratification is driven by offshore Ekman transport of the shelf water over the denser slope water. The 2‐dimensional model shows that upfront winds can indeed drive Ekman restratification and alleviate light limitation of phytoplankton growth at the shelf‐break front. 
    more » « less
  3. Abstract Climatic changes have decreased the stability of the Gulf Stream (GS), increasing the frequency at which its meanders interact with the Mid‐Atlantic Bight (MAB) continental shelf and slope region. These intrusions are thought to suppress biological productivity by transporting low‐nutrient water to the otherwise productive shelf edge region. Here we present evidence of widespread, anomalously intense subsurface diatom hotspots in the MAB slope sea that likely resulted from a GS intrusion in July 2019. The hotspots (at ∼50 m) were associated with water mass properties characteristic of GS water (∼100 m); it is probable that the hotspots resulted from the upwelling of GS water during its transport into the slope sea, likely by a GS meander directly intruding onto the continental slope east of where the hotspots were observed. Further work is required to unravel how increasingly frequent direct GS intrusions could influence MAB marine ecosystems. 
    more » « less